I MBA - II Semester - Regular / Supplementary Examinations **JULY 2024**

MANUFACTURING AND SERVICES OPERATIONS MANAGEMENT

Duration: 3 Hours

- Note: 1. This question paper contains three Parts-A, Part-B and Part-C.
 - 2. Part-A contains 8 short answer questions. Answer any **Five** Questions. Each Question carries 2 Marks.
 - 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
 - 4. Part-C contains one Case Study for 10 Marks.
 - 5. All parts of Question paper must be answered in one place
- BL Blooms Level

		BL	CO		
1. a)	Name some of the key objectives of Production	L1	CO1		
	and Operations Management.				
1. b)	Describe the relationship between a production	L2	CO1		
	manager and other departments within an				
	organization.				
1. c)	Identify the primary stages involved in Project	L1	CO2		
	Planning and Control (PPC).				
1. d)	Recall the primary objectives of production	L1	CO2		
	scheduling and sequencing.				
1. e)	List the basic tools and techniques used for	L1	CO3		
	quality management.				
	Page 1 of 7				

PART - A

Max. Marks: 70

CO – Course Outcome

1. f)	Describe the role of statistical process control	L2	CO3
	(SPC) in Six Sigma.		
1. g)	Why is it essential for organizations to establish	L2	CO4
	purchasing policies and procedures?		
1. h)	What are the main types of gaps identified in the	L1	CO5
	Service Quality GAP model?		

PART – B

			BL	СО	Max.
					Marks
		<u>UNIT – I</u>			
2.	a)	Demonstrate the effectiveness of different	L3	CO1	5 M
		production and operations management			
		strategies in meeting customer demands.			
	b)	Identify the some potential causes of	L3	CO1	5 M
		inefficiency in production processes, and			
		how can a production manager identify			
		and address them?			
	1	OR			
3.	a)	Develop a plan for integrating CAD/CAM	L3	CO1	5 M
		technology into an existing manufacturing			
		facility to improve productivity and			
		product quality.			
	b)	Critically evaluate the role of quality	L3	CO1	5 M
		management in Production and Operations			
		Management.			

		<u>UNIT – II</u>			
4.	a)	Compare and contrast the advantages and limitations of PERT and CPM methodologies.	L3	CO2	5 M
	b)	Analyze the effectiveness of different scheduling techniques (e.g., MRP, JIT) in PPC for mass, batch, and job order manufacturing.	L4	CO2	5 M
	1	OR			
5.	a)	Imagine you're overseeing a job shop with varying customer demands. How would you use priority rules to sequence job orders effectively?	L3	CO2	5 M
	b)	What are some potential consequences of poor production scheduling and sequencing on overall operational performance?	L4	CO2	5 M
	1	<u>UNIT-III</u>			
6.	a)	Suppose you're tasked with implementing a quality improvement initiative in a manufacturing plant. How would you apply the principles of Total Quality Management (TQM)?	L3	CO3	5 M
	b)	What criteria would you use to evaluate the success of a Six Sigma deployment within an organization?	L3	CO3	5 M
		OR			

7.	a)	What are some potential barriers to	L3	CO3	5 M
		productivity improvement initiatives, and			
		how can they be analyzed and addressed?			
	b)	Illustrate the effectiveness of various work	L3	CO3	5 M
		design improvement strategies in reducing			
		waste and improving operational			
		efficiency.			
		$\underline{\mathbf{UNIT}} - \mathbf{IV}$		· · ·	
8.	a)	Assess the effectiveness of various	L4	CO4	5 M
		inventory control measures implemented			
		in stores management in minimizing			
		carrying costs and obsolescence.			
	b)	Compare and contrast different approaches	L4	CO4	5 M
		to setting safety stock levels, such as the			
		fixed quantity method and the reorder			
		point method.			
		OR			
9.	a)	Critically evaluate the role of technology,	L4	CO4	5 M
		such as inventory management software			
		and barcode systems, in enhancing			
		inventory control processes.			
	b)	Imagine you're tasked with implementing	L3	CO4	5 M
		a Just-in-Time (JIT) inventory system in a			
		manufacturing plant. How would you			
		apply JIT principles to streamline			
		inventory management and reduce waste?			

	$\underline{\mathbf{UNIT}} - \mathbf{V}$					
10.	a)	Assess the effectiveness of various	L4	CO5	5 M	
		strategies for closing the gaps identified in				
		the Service Quality GAP model.				
	b)	Assess the effectiveness of various service	L4	CO5	5 M	
		design approaches in meeting customer				
		needs and expectations.				
		OR				
11.	a)	What criteria would you use to evaluate	L4	CO5	5 M	
		the success of a queue management				
		strategy in a service organization?				
	b)	Assess the effectiveness of various supply	L4	CO5	5 M	
		chain performance metrics in measuring				
		supply chain efficiency and effectiveness.				

PART –C

		BL	СО	Max. Marks
12.	Case study: Plant layout Design	L6	CO2	10 M
	Alpha, a four -wheeler company, is a leading			
	company in the south manufacturing chassis of			
	bus/lorry, in 600 acres of land with 3000			
	employees. The annual production capacity of			
	the plant is 60,000 chassis. The market research			
	department projected its future demand to be			
	2.5 times the present capacity of the plant. So,			
	the company took a decision to set up another			

plant in the north with a capacity of 75,000 chassis. It is in the process of procurement of the required land of 1000 acres. The projected number of employees in the new factory would be 4000.

The productivity of any company mainly depends on the type of layout that is used to carry out the activities to produce the product. So, the industrial engineering department of the existing company is given the task of design the right type of layout for the new company.

All the sections of the automobile company will not have the same type of layout. The final assembly of chassis is done on a powered conveyer belt. This part of the company uses product layout which assemble the necessary subassemblies and components to form a full chassis. The other sections of the company are as follows:

Engine assembly, Crank case production, Cylinder Production, Cylinder head production, Piston Production, Connecting Rod production, Gear production (about 40 different gears).

The following other items and subassemblies are subcontracted:

Radiator, Fuel pump, Fuel injection system(components), Cams, Gear box, Clutch

plate, Transmission system (Tie rod, gears,		
axles, etc.)		
Wheels and braking system, Tubes and tyres,		
Horn and electrical system including batteries,		
Bulb, Doors, Glasses, Body frame and Pannel		
for drivers' cabin, Bearings, Nuts and Bolts,		
Cotter pins, Bumpers.		
Now the company is left with the option of		
process layout/product layout /group technology		
layout / fixed position layout for the sections		
listed in this case.		
Questions:		
1. As a consultant to a company, critically		
examine the material handling activities in		
each section and accordingly suggest a		
suitable layout.		
2. Also, suggest available software technique		
to design each layout.		
3. Also, give the overall layout of the		
company which shows the positioning of		
different sections in relation to the chassis		
assembly line.		